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Abstract
In this work, we identify the manifold of solitary waves arising in a three-
component scalar field model using the Bogomol’nyi arrangement of the energy
functional. A rich structure of topological and non-topological kinks exists in
the different sub-models contained in the theory.

PACS numbers: 11.10.Lm, 11.27.+d

1. Introduction

The search for solitary waves is an ongoing topic in both Mathematics and Physics because
this kind of quasi-soliton plays an important role in a huge number of branches of non-linear
science. In field theory, they usually appear in models that support spontaneous symmetry
breaking, the most prominent examples being kinks/domain walls, vortices and monopoles
[1]. Starting with theories that involve a high number of fields, the usual procedure followed
to investigate the existence of solitary waves—topological defects—is to obtain an effective
scalar field theory, imposing severe restrictions on the original theory. In most cases, one is
compelled to pursue an effective theory that will correspond to a single scalar field model,
where the existence of topological defects can be checked easily. The reason for this is
the good understanding of this kind of system; as paradigmatic examples, the well-known
kink and soliton in the one-dimensional φ4 and sine-Gordon models should be noted. Both
kinds of solitary wall can be thought of as thick walls, the topological defects in a three-
dimensional perspective. Nevertheless, the general framework is that the effective theory
depends on several scalar fields and thus the truncation may involve an important loss of
information concerning the presence of topological defects and the structure of spontaneous
symmetry breaking. It is therefore desirable to investigate the general properties of domain
wall solutions in a multi-scalar field theory.

In (1+1)-dimensional field theory, solitary waves are non-singular solutions of the non-
linear coupled field equations of finite energy such that their energy density has a spacetime
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dependence of the form: ε(x, t) = ε(x − vt), where v is the velocity of propagation. In
relativistic theories, Lorentz (or Galilean) invariance provides all the kink solutions from
the purely static ones. The search for finite-energy static solutions in one-dimensional field
theories is tantamount to the search for finite action trajectories in a natural dynamical system
where the x-coordinate plays the role of time; the field components transmute to positions in the
configuration space, and the field theoretical density energy becomes minus the mechanical
potential energy. No wonder the difficulties involved in finding kinks in multi-component
scalar field theories: one faces multi-dimensional mechanical systems where integrability is
not ensured.

At a very early stage in the (pre)history of the subject, a (1+1)-dimensional field theoretical
model with two real scalar fields became relevant. Montonen and Sarker–Trullinger–Bishop
proposed the deformation of the O(2)-linear sigma model with a potential energy density of
U(φ1, φ2) = 1

2

[(
φ2

1 + φ2
2 − 1

)2
+ σ 2φ2

2

]
, see [2]. It was clear that the zeros of the potential

are two points and hence the hunt for kinks started immediately4. Using a trial orbit method
in the associated two-dimensional mechanical system, Rajaraman identified two different
topological kinks joining the two vacua of the system that live on a straight line and half-
ellipses respectively. Only one component of the scalar field is non-zero in the first case, but
the two components differ from zero in the second kind of solution; for this reason, these
solitary waves are referred to as TK1 (straight line) and TK2/TK2* (upper/lower half-ellipse)
kinks in the literature that appeared later. Rajaraman also found one kink associated with a
closed trajectory starting from and ending at the same point of the vacuum orbit. Magyari
and Thomas [3] realized that the mechanical system associated with the MSTB model is
integrable—there is a second invariant in involution with the mechanical energy—and used
this fact to show that there exists a whole family of two-component non-topological kinks
(NTK2), all of them degenerated in energy with Rajaraman’s NTK2 kink; explicit kink form
factors were only described by numerical methods.

The main breakthrough in analytically finding all the solitary waves of the MSTB model
emerged in [4]. Ito discovered that the mechanical problem was not only integrable but that
it was Hamilton–Jacobi separable by using elliptic coordinates. In this setting, he showed the
analytic formulae for the kink orbits and the kink form factors, unveiling the mathematical
reasons for the previously observed striking kink sum rule. Immediately, the stability of this
degenerate kink family was questioned; application of the Morse index theorem solved this
problem in [5]. A parallel with the Morse theory of geodesics was established somewhat later
in [6]. Thus, a clear connection arose between solitary waves, their stability and dynamical
systems. In [7], several of us showed that the MSTB model is not unique in this respect; two
(1+1)-dimensional field theoretical models with two real scalar fields—referred to as model
A and model B in that paper—have manifolds of solitary waves with similar structures. To
find the analytic expression for the kinks of model A, we were prompted to solve an integrable
dynamical system classified as Liouville type I, see [8]. The system belongs to the same class
as that found in the MSTB model—the two-dimensional Garnier system [9]—but there are
three differences: (a) the potential energy density is a polynomial of sixth order in the fields
(instead of fourth), (b) the vacuum orbit has five points (instead of two), and (c) there are
many more stable kinks than in the MSTB model. Model B is characterized by a fourth-order
potential energy density in the two scalar fields. The main feature, however, is the need to
solve a Liouville integrable system of type III, i.e. Hamilton–Jacobi separable in parabolic

4 We shall refer to the zeros of the potential as vacua throughout the paper, anticipating their role in the quantization
of this classical field theory. Also, because these two points are related by the internal symmetry group Z2 ⊗ Z2
generated by φ1 → −φ1 and φ2 → −φ2, we shall sometimes refer to this set as the vacuum orbit.
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coordinates. The vacuum orbit has four points and there are manifolds of stable and unstable
kinks.

In recent years, all this work has proved to be fruitful in the framework of supersymmetric
theories. In the dimensional reduction of a generalized Wess–Zumino model with two chiral
superfields, Bazeia–Nascimento–Ribeiro–Toledo (henceforth referred to as the BNRT model)
[10] found one one-component topological kink (TK1) and one two-component topological
kink (TK2). In this case, the vacuum orbit has four points and the potential energy density
is a polynomial in the fields of order 4. Understanding the BNRT model as a deformation
of model B, some of us discovered the whole manifold of kink orbits [11]. There is kink
degeneracy, also found slightly earlier by Shifman and Voloshin in one of the topological
sectors [12], and, for two critical values of the coupling constant, analytic formulae for the
kink form factors are available. One of them corresponds exactly to model B; the other one
leads to a Liouville system of type IV, Hamilton–Jacobi separable in Cartesian coordinates.
Interesting consequences have been translated to the dynamics of intersecting branes [13].
How thick walls grow from one-component kinks is well known. Composite kinks give rise to
a non-trivial low energy dynamics for intersecting walls as geodesic motion in the kink moduli
space (the space of the integration constants with a metric inherited from the field theoretic
kinetic energy). Another supersymmetric model that shows a rich pattern of kink solutions is
the Wess–Zumino model itself. The BPS kink states of this N = 2 supersymmetric (1 + 1)D

model with a complex scalar field and holomorphic superpotential were discovered by Vafa
et al in [14]. In [15], two of us studied this system from the point of view of the real-analytic
structure. The vacuum orbit having been identified, the flow between the vacuum points was
determined as the gradient of the real (imaginary) part of the superpotential. Thus, kink orbits
are identified with real algebraic curves.

Here, we continue to struggle with the extension of these studies to field theoretical models
with three real scalar fields. In [16], some of us explored the generalization of the MSTB
model. The solution of the three-dimensional Garnier system using three-dimensional Jacobi
coordinates revealed the existence of an extremely complex variety of kinks. Nevertheless,
the structure of the kink manifold and its stability was completely unravelled in [17]. The
main goal of the present paper is to identify the kink manifold arising in a family of three-
component relativistic field models with a vacuum manifold that contains several elements
or points. This family can be interpreted as the natural generalization of the generalized
MSTB model studied in [16, 17] in the sense of Stäckel-type systems. The most interesting
feature of this generalization is that the number of elements in the vacuum manifold depends
on the range of relative values of the coupling constants. Therefore, we can find different
sub-models of our system, which have a very rich structure of kink manifolds. When the
energy density of these kinks or solitary waves is studied we find that several families of
these solutions are degenerate, which allows us to claim that some kink families indeed
consist of more basic kinks, such that their energy density displays several lumps associated
with the basic kinks. In our model, we are able to find solutions with two, three or four
lumps.

The organization of the paper is as follows. In section 2 we introduce the model, writing
the expressions in Stäckel form and describing the different spontaneous symmetry-breaking
scenarios. Section 3 is divided into four subsections. In section 3.1, we identify first-order
differential equations satisfied by the kink solutions, reproducing the Bogomol’nyi procedure
in this context. Section 3.2 contains the resolution of these equations. In section 3.3,
we determine the regions where the solutions live and, finally, in section 3.4, some general
comments about the determination of the stability of the kink solutions are offered. In section 4
we describe the behaviour of solitary wave families in one of the regimes of the model, at the
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same time discussing their stability properties. Finally, in section 5 we address some points
concerning the different extensions of the model.

2. The model

We focus our attention on the search for kink solutions arising in three-component scalar
field models in a (1+1) Minkowskian spacetime, whose dynamics is governed by the action
functional

S[φ] =
∫

d2x


1

2

3∑
j=1

∂µφj∂
µφj − U(φ)




where we use Einstein’s convention for Greek indices with the usual metric η11 = −η22 = 1,

η12 = η21 = 0, and where U(φ) is a smooth non-negative function that depends on the
three-component scalar field φ = (φ1, φ2, φ3). We use natural units, hence c = 1, and we
shall henceforth denote x0 ≡ t and x1 ≡ x. The Euler–Lagrange equations in this case are
written as the following system of second-order partial differential equations:

∂2φi

∂t2
− ∂2φi

∂x2
= − ∂U

∂φi

(φ1, φ2, φ3) i = 1, 2, 3. (1)

Kinks are finite-energy solutions of (1), such that the time dependence is dictated by the
Lorentz invariance: φK(t, x) = φ

(
x−vt√
1−v2

)
, and they can be interpreted as extremals of the

positive semi-definite energy functional

E[φ] =
∫

dx ε(x) =
∫

dx

{
1

2

3∑
i=1

∂φi

∂x

∂φi

∂x
+ U(φ1, φ2, φ3)

}
(2)

which maintains this functional finite: E[φ] < +∞, see [1]. Therefore, solitary waves must
comply with the asymptotic conditions

(a) lim
x→±∞ φ ∈ M (b) lim

x→±∞
dφ

dx
= 0 (3)

where M is the set of zeros or absolute minima of the potential term—that is, M =
{(φ1, φ2, φ3) ∈ R

3/U(φ1, φ2, φ3) = 0}—which are usually referred to as vacua of the theory
because the elements of M play this role in the corresponding quantum theory.

The usual procedure for tackling the search for kinks in this kind of theory is to interpret
(2) as the action functional of a mechanical system in which we think of the variable x as ‘time’,
φ as the coordinates of a unit-mass point particle, and V = −U as the potential function.
From this point of view, (1) are merely equations of motion in the new system. In [16], the
authors deal with the model involving the potential function

U(φ1, φ2, φ3) = 1
2

(
φ2

1 + φ2
2 + φ2

3 − 1
)2

+ 1
2σ 2

2 φ2
2 + 1

2σ 2
3 φ2

3 (4)

and show that the mechanical analogue is not only completely integrable but also Hamilton–
Jacobi separable by using a system of three-dimensional elliptic coordinates. In [17], the
stability properties of kinks are analysed and a new approach to search for kinks based on the
Bogomol’nyi decomposition is given in the above system. The authors prove the equivalence
between the Hamilton–Jacobi equation and the Bogomol’nyi approach. The potential function
(4) has two zeros, v− = (−1, 0, 0), v+ = (1, 0, 0). Therefore, the kinks in this model can
be classified into topological and non-topological kinks according to whether the solution
connects two different vacua (open orbits) or the solution departs and arrives at a vacuum
(closed orbits).
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The search for new integrable models is not an easy task. In this sense, we would remark
the following quotation from Jacobi in his ‘Vorlesungen über Dynamik’, which allows us to
see the issue from a different perspective: “The main difficulty in integrating given differential
equations is to introduce suitable variables which cannot be found by a general rule. Therefore,
we must go in the opposite direction and, after finding some remarkable substitution, look for
problems to which it could be successfully applied.”

The goal of this paper is to generalize the above model, focusing our attention on models
with a greater-than-two number of elements in M, such that we can find a more sophisticated
symmetry-breaking scenario and a richer plethora of solitary waves than before.

Using the same notation as in [16], we now introduce a system of Jacobi elliptic coordinates
λ = (λ1, λ2, λ3), with constants σ̄ 2

3 = 1 − σ 2
3 , σ̄ 2

2 = 1 − σ 2
2 and 1, which is defined as

φ2
1 = 1

σ 2
2 σ 2

3

(1 − λ1)(1 − λ2)(1 − λ3)

φ2
2 = −1

σ 2
2

(
σ 2

3 − σ 2
2

)(σ̄ 2
2 − λ1

)(
σ̄ 2

2 − λ2
)(

σ̄ 2
2 − λ3

)
(5)

φ2
3 = −1

σ 2
3

(
σ 2

2 − σ 2
3

)(σ̄ 2
3 − λ1

)(
σ̄ 2

3 − λ2
)(

σ̄ 2
3 − λ3

)
in which the range of the coordinates is

−∞ < λ1 < σ̄ 2
3 < λ2 < σ̄ 2

2 < λ3 < 1. (6)

It should be noted that this coordinate transformation is invariant under the group G = Z
×3
2

generated by φa → (−1)δabφa, b = 1, 2, 3.
Invoking (5), the energy functional can be written as

E[φ] =
∫

dx


1

2

3∑
j=1

gjj (λ)
∂λj

∂x

∂λj

∂x
+ U(λ1, λ2, λ3)


 (7)

where the metric coefficients gjj (λ) = − 1
4

fj (λ)

(λj −1)(λj −σ̄ 2
2 )(λj −σ̄ 2

3 )
have been introduced. Here, we

set fj (λ) =∏3
k=1,k �=j (λj − λk).

In the new variables, the potential (4) is written as

U(λ) = 1

2

3∑
i=1

λ2
i

(
λi − σ̄ 2

2

)(
λi − σ̄ 2

3

)
fi(λ)

(8)

and their zeros v− and v+ are mapped to one point v ≡ (
λv

1, λ
v
2, λ

v
3

) = (
0, σ̄ 2

3 , σ̄ 2
2

)
in the

elliptic space because of the above-mentioned invariance.
In order to generalize expression (8), we introduce the following potential function,

U(λ; ᾱ2) =
3∑

i=1

Ui(λ; ᾱ2) = 1

2

3∑
i=1

λ2
i

(
λi − σ̄ 2

2

)(
λi − σ̄ 2

3

)
(λi − ᾱ2)2

fi(λ)
(9)

which becomes a polynomial function of eighth degree in the original fields. Note that we
have added a new factor (λi − ᾱ2)2 to each of the summands in (8). Thus, (9) introduces new
degenerate vacua in M, which for fixed σ̄ 2

2 and σ̄ 2
3 depend upon the value of the coupling

constant ᾱ2 = 1 − α2. Therefore, new scenarios of spontaneous symmetry breaking and a
richer kink manifold arise in this model. Taking into account the range (6) for the elliptic
coordinates and formula (9), we can observe that the new structure of the set M depends on
the relative values between the constant ᾱ2 and the fixed constants σ̄ 2

2 , σ̄ 2
3 and 1. For instance,
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λ3

F3

F2
A

B O

C F1

λ2

λ1
v1

v2

2

v1

v1

v2

v2
F2

F3

3

1

Figure 1. Vacuum manifold in the Cartesian and elliptic spaces: regime E2. F1, F2 and F3 stand
for the foci of the ellipsoid; B and C are the extremes of the minor semi-axis, and A represents the
umbilical points.

for ᾱ2 > 1 the new factor (λi − ᾱ2)2 does not vanish for any value of λi and therefore M
has the same structure as that in model (8). However, for ᾱ2 ∈ (σ̄ 2

3 , σ̄ 2
2

)
we find new vacua

located at the points λ ≡ (σ̄ 2
3 , ᾱ2, σ̄ 2

2

)
and λ ≡ (0, ᾱ2, σ̄ 2

2

)
.

We shall now introduce different scenarios for our model depending on the value of the
constant ᾱ2. We shall distinguish the number of vacua in each case.

Regime E1. As mentioned above, for ᾱ2 ∈ (1,∞) there exists only one vacuum in the elliptic
space, minimizing the potential function: λv1 = (

0, σ̄ 2
3 , σ̄ 2

2

)
. We have a similar situation

if the constant ᾱ2 takes the discrete values 0, σ̄ 2
3 or σ̄ 2

2 . For this reason we define the set
L0 = {0, σ̄ 2

3 , σ̄ 2
2

}∪ (1,∞), taking into account that if ᾱ2 ∈ L0 our model only has a vacuum,
λv1 , in the elliptic space. In the Cartesian space, the vacuum manifoldM can be regarded as the
orbit generated by the action of the group G/H1 over the vacuum v1, where H1 = 1×Z2 ×Z2

is the group that leaves the coordinates of v1 invariant. There are therefore two vacua in the
Cartesian space M0 = {φv1 = (±1, 0, 0)

}
.

The kink solutions in this model display the same behaviour as those of the model studied
in [16], although the explicit expression of the equations of motion is more complicated
because we have a polynomial of degree 8 in the original fields. Owing to this similarity, we
shall not deal with this regime in our study.

Regime E2. We now consider the range ᾱ2 ∈ L1 = (
0, σ̄ 2

3

)
for the coupling constant. In

this regime, new zeros of the potential arise on the plane λ1 = ᾱ2, in the elliptic space that

corresponds to the ellipsoid φ2
1

1−ᾱ2 + φ2
2

σ̄ 2
2 −ᾱ2 + φ2

3

σ̄ 2
3 −ᾱ2 = 1 in the Cartesian space. In fact, two

vacua arise in the elliptic space, λv1 = (
0, σ̄ 2

3 , σ̄ 2
2

)
and λv2 = (

ᾱ2, σ̄ 2
3 , σ̄ 2

2

)
, both invariant

under the subgroup H2 = H1. Correspondingly, there are four vacua in the Cartesian space
that correspond to the orbit

⊔2
i=1(G/Hi)vi . Therefore, we have M1 = {φv1 = (±1, 0, 0),

φv2 = (±α, 0, 0)}, as depicted in figure 1.
It is interesting to remark that the range of values ᾱ2 ∈ (−∞, 0) is formally analogous

to that in which ᾱ2 ∈ L1, interchanging the roles of the ellipsoids λ1 = 0 and λ1 = ᾱ2 in the
previous reasoning. We shall therefore focus our attention on the range of values L1.

Regime H1. In this case, ᾱ2 ∈ L2 = (
σ̄ 2

3 , σ̄ 2
2

)
. From the values of ᾱ2 and the range of the

elliptic coordinates, the zeros of the potential term (9) arise on the plane λ2 = ᾱ2, which
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λ
2

λ
3

λ
1

F3

F2
A

v1

v3 v2

F1

1

v1

v 2 v2

v1

2

3

v3

v3

v3

v3

Figure 2. Vacuum manifold in the Cartesian and elliptic spaces: regime H1.

λ2

λ3

λ1
F3

F2
A

v1

v3 v2

v4

1

v1

v1

2

3

A

v3

v3

OC

B

v4

v4

v2

v2 F2

Figure 3. Vacuum manifold in the Cartesian and elliptic spaces: regime H2.

is equivalent to the hyperboloid of one sheet φ2
1

1−ᾱ2 + φ2
2

σ̄ 2
2 −ᾱ2 = 1 + φ2

3

ᾱ2−σ̄ 2
3

in the Cartesian

space. We find three vacua located at the points λv1 = (
0, σ̄ 2

3 , σ̄ 2
2

)
, λv2 = (

σ̄ 2
3 , ᾱ2, σ̄ 2

2

)
and

λv3 = (
0, ᾱ2, σ̄ 2

2

)
. The vacua v1 and v2 remain invariant under H1, whereas v3 is invariant

under H3 = 1 × Z2 × 1. There are eight vacua in the Cartesian space corresponding to the
orbit

⊔3
i=1(G/Hi)vi , with coordinates M2 = {

φv1 = (±1, 0, 0), φv2 = (±α, 0, 0), φv3 =(± α
σ3

, 0,± σ̄3
σ3

√
ᾱ2 − σ̄ 2

3

)}
, as shown in figure 2. In section 4, for the sake of clarity we shall

focus on this regime in order to describe in detail a particular kink manifold of the model
instead of discussing it in each single regime.

Regime H2. This case is characterized by ᾱ2 ∈ L3 = (
σ̄ 2

2 , 1
)
. Applying the same reasoning

as before, we find that new vacua arise on the plane λ3 = ᾱ2; that is, the hyperboloid of two

sheets φ2
1

1−ᾱ2 = 1 + φ2
2

ᾱ2−σ̄ 2
2

+ φ2
3

ᾱ2−σ̄ 2
3

in Cartesian coordinates. In particular, the potential has four

minima: λv1 = (0, σ̄ 2
3 , σ̄ 2

2

)
, λv2 = (σ̄ 2

3 , σ̄ 2
2 , ᾱ2

)
, λv3 = (0, σ̄ 2

2 , ᾱ2
)

and λv4 = (0, σ̄ 2
3 , ᾱ2

)
. The

vacuum v4 is invariant under H4 = 1×1×Z2, and the Cartesian vacuum manifold is the orbit⊔4
i=1(G/Hi)vi , see figure 3; namely,
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M3 =
{
φv1 = (±1, 0, 0), φv2 = (±α, 0, 0),

φv3 =
(

± α

σ3
, 0,± σ̄3

σ3

√
ᾱ2 − σ̄ 2

3

)
, φv4 =

(
± α

σ2
,± σ̄2

σ2

√
ᾱ2 − σ̄ 2

2 , 0

)}
.

Regime H2′. In this case, the coupling constant ᾱ2 is set equal to unity. In the internal elliptic
space we can read the minima as λv1 = (

0, σ̄ 2
3 , σ̄ 2

2

)
, λv2 = (

σ̄ 2
3 , σ̄ 2

2 , 1
)
, λv3 = (

0, σ̄ 2
2 , 1
)

and λv4 = (
0, σ̄ 2

3 , 1
)
, which correspond to eight minima in the Cartesian space: M′

3 =
limᾱ2→1 M3 = {φv1 = (±1, 0, 0), φv2 = (0, 0, 0), φv3 = (0, 0,±σ̄3), φ

v4 = (0,±σ̄2, 0)}.
In this latter case, the plane λ3 = 1 is introduced into the elliptic space. Unlike the

previously introduced planes, this is no longer a regular one, and this can be readily seen in
the degeneracy exhibited by the H2 vacuum manifold at the limit ᾱ2 → 1; this singular plane
corresponds to the plane φ1 = 0 in Cartesian coordinates. Regarding the kink manifold, this
is basically the same as that of the H2 model, except that the kink solutions existing on the
two sheets of the hyperboloid and in between them now degenerate into kink solutions on the
plane φ1 = 0. This situation is the 3D analogue of model A in [7].

3. First-order equations and Kink manifolds

3.1. The superpotential and the Bogomol’nyi arrangement

We note that the potential (9) determines a Stäckel system [8]. Therefore, the Hamilton–
Jacobi equation of the mechanical analogue is separable using the system of Jacobi elliptic
coordinates. However, here we shall make use of the Bogomol’nyi arrangement in order to
obtain the kink manifold of our model. The two procedures are equivalent (see [17]) but the
second one allows us to identify the supersymmetric extension of our field theory, given that
if the energy functional (7) can be written as

E[φ] =
∫

dx
1

2

3∑
j=1

gjj

(
∂λj

∂x
± 1

gjj

∂W(λ)

∂λj

)2

∓
∫

dx
dW(λ)

dx
(10)

for some function W(λi), then the underlying field theory has a supersymmetric extension in
which the function W plays the role of superpotential in the supersymmetric field theory, see
[18]. Therefore, the superpotential W must comply with

2U(λ) = g−1
11 (λ)

(
∂W

∂λ1

)2

+ g−1
22 (λ)

(
∂W

∂λ2

)2

+ g−1
33 (λ)

(
∂W

∂λ3

)2

.

Plugging the expression of the potential function (9) and the metric coefficients into the
above equation, we have

3∑
i=1

λ2
i (λi − ᾱ2)2∏3

j=2

(
λi − σ̄ 2

j

)
fi(λ)

=
3∑

i=1

−4(λi − 1)
∏3

j=2

(
λi − σ̄ 2

j

)
fi(λ)

(
∂W

∂λi

)2

which can be solved easily by the ansatz W = W1(λ1) + W2(λ2) + W3(λ3). The three resulting
decoupled ordinary differential equations(

dWi

dλi

)2

= λ2
i (λi − ᾱ2)2

4(1 − λi)
i = 1, 2, 3

lead us to the expression of the superpotential function W ,

W(β1,β2,β3)(λ) =
3∑

i=1

W
βi

i (λi) = 1

15

3∑
i=1

(−1)βi P2(λi)
√

1 − λi βi = 0, 1

where P2(λi) = 2d + dλi − 3λ2
i , with d = (5ᾱ2 − 4).
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Extremal trajectories for the energy functional (10) arise if the following system of first-
order differential equations,

dλi

dx
= (−1)βi g−1

ii (λ)
dWi

dλi

= (−1)βi 2
λi(λi − ᾱ2)

(
λi − σ̄ 2

2

)(
λi − σ̄ 2

3

)
fi(λ)

√
1 − λi (11)

where βi = 0, 1 and i = 1, 2, 3 is satisfied, because the squared terms in (10) are always
positive and the last one is a constant. Due to the indeterminacy of the signs β1, β2 and β3, (11)
constitutes eight systems of ordinary differential equations. Nevertheless, this set of systems
is easier to solve than second-order (Euler–Lagrange) equations. In order to obtain a complete
kink solution we have to join solutions from the first-order differential equations with different
choices of the signs (−1)βi in different intervals covering the real line. The reason for this is
that the first-order differential equations inherit the information of the second-order equations
defined piecewise. Assuming that we search for continuous and differentiable solutions, the
sequence of signs (−1)βi corresponding to the different pieces that constitute a solution is
prescribed. In section 4 we shall illustrate this approach in several cases. From (10) it is
readily seen that the energy of a solitary wave, solution of (11) with only one piece, depends
only on the topological charge of the solution. In this case, it is said that the Bogomol’nyi
bound is saturated. However, if the orbit λ is given by λ = ∪J

j=1λ
j , where J is the number of

pieces of λ and λj stands for the j th piece, we have

E[λ] =
∑

pieces of λ

∫
dx

dW(λ)

dx
=
∑

j

∫ 3∑
i=1

∂W {βi }j

∂λi

dλi

=
J∑
j

(
W {βi }j (λj

final

)− W {βi }j (λj

initial

))
(12)

where {βi}j represents the values of the βi parameters for the j th piece of the solution.

3.2. Solutions via quadratures

In order to solve system (11), we rewrite it in the form
dλi

(−1)βi 2
√

1 − λi

∏4
j=1(λi − cj )

= dx

fi(λ)
i = 1, 2, 3 (13)

where we have defined c = (
ᾱ2, σ̄ 2

2 , σ̄ 2
3 , σ̄ 2

4

)
and σ̄ 2

4 = 0 for future convenience. The sum of
these equations gives

3∑
i=1

dλi

(−1)βi 2
√

1 − λi

∏4
j=1(λi − cj )

= 0. (14)

Multiplying each side of (13) by λi and summing over i, we obtain
3∑

i=1

λi dλi

(−1)βi 2
√

1 − λi

∏4
j=1(λi − cj )

= 0. (15)

Also, multiplying (13) by λ2
i and summing again over i we reach the equation that

establishes the dependence of the kink components on x
3∑

i=1

λ2
i dλi

(−1)βi 2
√

1 − λi

∏4
j=1(λi − cj )

= dx. (16)
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We shall now determine the kink orbits and the form factor by invoking (14)–(16).
Integration of the first two equations,

3∑
i=1

(−1)βi

2

∫
dλi√

1 − λi

∏4
j=1(λi − cj )

= γ2

3∑
i=1

(−1)βi

2

∫
λi dλi√

1 − λi

∏4
j=1(λi − cj )

= γ3

leads us to the expression of the generic kink orbits,

e2γ2 =
4∏

j=1

∣∣∣∣
√

1−λ1−
√

1−cj√
1−λ1+

√
1−cj

∣∣∣∣
(−1)β1
Fj (c)

4∏
j=1

∣∣∣∣
√

1−λ2−
√

1−cj√
1−λ2+

√
1−cj

∣∣∣∣
(−1)β2
Fj (c)

4∏
j=1

∣∣∣∣
√

1−λ3−
√

1−cj√
1−λ3+

√
1−cj

∣∣∣∣
(−1)β3
Fj (c)

(17)

e2γ3 =
3∏

j=1

∣∣∣∣
√

1−λ1−
√

1−cj√
1−λ1+

√
1−cj

∣∣∣∣
(−1)β1 cj

Fj (c)
3∏

j=1

∣∣∣∣
√

1−λ2−
√

1−cj√
1−λ2+

√
1−cj

∣∣∣∣
(−1)β2 cj

Fj (c)
3∏

j=1

∣∣∣∣
√

1−λ3−
√

1−cj√
1−λ3+

√
1−cj

∣∣∣∣
(−1)β3 cj

Fj (c)

(18)

where Fj (c) = √
1 − cj

∏4
l=1,l �=j (cj − cl), and γ2 and γ3 are arbitrary real constants that

specify a particular kink orbit.
The integration of (16)

3∑
i=1

(−1)βi

2

∫
λ2

i dλi√
1 − λi

∏4
j=1(λi − cj )

= γ1 + x

gives us the form factor of the kink,

e2(γ1+x) =
3∏

j=1

∣∣∣∣
√

1−λ1−
√

1−cj√
1−λ1+

√
1−cj

∣∣∣∣
(−1)β1 c2

j

Fj (c)
3∏

j=1

∣∣∣∣
√

1−λ2−
√

1−cj√
1−λ2+

√
1−cj

∣∣∣∣
(−1)β2 c2

j

Fj (c)
3∏

j=1

∣∣∣∣
√

1−λ3−
√

1−cj√
1−λ3+

√
1−cj

∣∣∣∣
(−1)β3 c2

j

Fj (c)

(19)

γ1 being an integration constant associated with the translational invariance of the system.
Expressions (17)–(19) provide us with the whole manifold of solitary waves.

3.3. Frontiers and barriers: basic kinks

We shall now prove that the set of solitary waves is confined to living in a bounded region
of the internal space, which in fact corresponds to a parallelepiped in the elliptic space. For
the sake of clarity, we shall restrict our study to the range ᾱ2 ∈ L, where L = ⋃3

i=1 Li is
the set in which the kink manifold is the richest, see section 2. This includes the regimes
E2, H1 and H2. Squaring the first equation in (13), and defining the generalized momentum
π1 = g11(λ) dλ1

dx
, we have

1

2
π2

1 − λ2
1(λ1 − ᾱ2)2

8(1 − λ1)
= 0. (20)

Equation (20) can be regarded as that governing the motion of a particle moving under
the influence of the potential function

U(λ1) =




−λ2
1(λ1 − ᾱ2)2

8(1 − λ1)
−∞ < λ1 < σ̄ 2

3

∞ σ̄ 2
3 < λ1 < ∞.

The function has at least one minimum in λ1 = 0 and a second one in λ1 = ᾱ2 if ᾱ2 ∈ L1.
Furthermore, the functionU(λ1) goes to −∞ as λ1 tends to −∞. Thus the bounded motion can
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only occur in the interval
[
0, σ̄ 2

3

]
. This, combined with the boundary conditions, leads us to the

conclusion that the kink solutions lie in the parallelepiped P̄ 3(0) = [0, σ̄ 2
3

]×[σ̄ 2
3 , σ̄ 2

2

]×[σ̄ 2
2 , 1
]
.

There is still more information that can be extracted following this procedure, owing to
the appearance of a second minimum. Let us first fix a value ᾱ2 in L, and let us set ᾱ2 ∈ Li

for some i that depends on ᾱ2. Squaring the ith equation of the system (13) and defining the
generalized momentum πi = gii(λ) dλi

dx
, we arrive at a similar one-dimensional dynamics:

1

2
π2

i − λ2
i (λi − ᾱ2)2

8(1 − λi)
= 0. (21)

Accordingly, the corresponding potential function is now defined by U(λ1) if i = 1 and

U(λi) =




−λ2
i (λi − ᾱ2)2

8(1 − λi)
min{Li} < λi < max{Li}

∞ λi /∈ Li

for i = 2, 3. The minimum λi = ᾱ2 now separates the bounded motion of the one-
dimensional system into two intervals—the λi ∈ L−

i = [min{Li}, ᾱ2] interval and the
λi ∈ L+

i = [ᾱ2, max{Li}] interval—and into the trivial motion λi = L0
i = ᾱ2. This,

together with the asymptotic conditions, leads us to conclude that, besides living in P̄ 3(0), the
kink solutions lie entirely in the sets

P̄ 3(0)−,0,+ = {λ ∈ P̄ 3(0) with λi ∈ L
−,0,+
i

}
.

This decomposition of the parallelepiped P̄ 3(0) is, for the case we shall study in detail,
regime H1, as follows (see figure 2):

P̄ 3(0) = P̄ 3(0)− ∪ P̄ 3(0)0 ∪ P̄ 3(0)+ = [0, σ̄ 2
3

]× [σ̄ 2
3 , ᾱ2

]× [σ̄ 2
2 , 1
]

∪ [0, σ̄ 2
3

]× {ᾱ2} × [σ̄ 2
2 , 1
] ∪ [0, σ̄ 2

3

]× [ᾱ2, σ̄ 2
2

]× [σ̄ 2
2 , 1
]
.

The parallelepipeds P̄ 3(0)− and P̄ 3(0)+ contain families of solutions that depend on two
and three parameters, whereas the plane P̄ 3(0)0 only contains two-parametric solutions.

Thus, introduction of the factor (λi − ᾱ2)2 into the potential function U(λ) leads us
(within our range of study) to a new confinement of kink solutions in the parallelepiped P̄ 3(0).
The generic kink solutions divide into two sectors and, in addition to this, a new kind of
two-parametric solutions arises: those satisfying λi = ᾱ2. Consequently, the kink manifold
can be decomposed as follows,

C = C−
i � C0

i � C+
i (22)

where C−,0,+
i represent the class of kink solutions with λi � ᾱ2, λi = ᾱ2 and λi � ᾱ2

respectively.

3.4. Stability

In this subsection, we discuss how to determine the stability properties of the kink solutions.
For the whole variety of kink solutions in this system, it is not possible to solve λ1, λ2 and
λ3 in terms of elementary functions of x. Therefore, it is not possible to explicitly write out
the Hessian operator for any kink in the model and, hence, the stability properties cannot be
studied through analysis of its spectrum.

To determine the stability of the solutions, we use instead the arguments developed in
[16] based on the Jacobi fields along kink solutions. Although the treatment depicted in
that paper is for a deformed sigma O(3) model, the extension to this model can be readily
carried out. Following this procedure, a rule establishing the stability (instability) of the
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Figure 4. Solitary waves on E in the Cartesian (left) and elliptic (middle) spaces. Energy density
of a kink of the family T

v1,v3
E (right).
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Figure 5. Solitary waves on φ3 = 0 in the Cartesian (left) and elliptic (middle) spaces. Energy
density of a kink of these families (right).

solutions is obtained: each solution crossing either the edge F1F3 ≡ {σ̄ 2
3 , σ̄ 2

3 , λ3
}

or the edge
AF2 ≡ {

λ1, σ̄
2
2 , σ̄ 2

2

}
becomes an unstable solution, since these two edges constitute lines of

conjugate points of each vacuum of the theory.
The key point is that the superpotential function is not differentiable over either of these

two edges and, consequently, the energy of the kink (12) is not a topological quantity since it
depends on the value of the superpotential at the crossing points.

In what follows, and bearing this remark in mind, we shall only mention the character of
each of the kinks described.

4. Description of the Kink manifold in the H1 regime

The description of the kink manifold in the different regimes arising in our model is a long and
tedious task. We shall therefore focus our attention on a particular example: the H1 regime.
Nevertheless, this case will suffice to illustrate the general features that also arise in other
regimes of our model. We shall now describe the behaviour of the kinks that arise in the H1
regime of our model. We can find basic kinks, similar to the solutions TK1 and TK2 in MSTB
model, that are placed on the edges of the characteristic parallelepiped in the elliptic space
(see figures 4–6). These solutions are the simplest kinks in our model and they consist of a
single lump, such that they can be interpreted as an extended particle. We shall show that
the kink manifold includes other kink solutions involving several lumps associated with the
basic kinks.
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Figure 6. Solitary waves on φ2 = 0 in the Cartesian (left) and elliptic (middle) spaces. Energy
density of a concrete kink of the family T
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σ2 (right).

We recall some remarkable points of the H1 regime from the previous sections: the
number of minima is 3 in the ‘elliptic’ space, and 8 in the Cartesian one (see figure 2):

M2 = {
φv1 = (±1, 0, 0), φv2 = (±α, 0, 0), φv3 = (± α

σ3
, 0,± σ̄3

σ3

√
ᾱ2 − σ̄ 2

3

)}
. The ellipsoid

E ≡ φ2
1 + φ2

2

σ̄ 2
2

+ φ2
3

σ̄ 2
3

= 1 (that is, λ = (0, λ2, λ3)), the one-sheet hyperboloid H ≡ φ2
1

1−ᾱ2 +
φ2

2

σ̄ 2
2 −ᾱ2 − φ2

3

ᾱ2−σ̄ 2
3

= 1 (or λ2 = ᾱ2), and the planes φ2,3 = 0 are distinguished surfaces in the

internal space. In section 3.3, we have proved that all the topological solutions are confined
within the above-mentioned ellipsoid E. From this point of view, these surfaces play the
role of separatrices among three-parameter families of solutions, as proved above. These
solutions are associated with finite values of the integration constants, γi . It is usual in the
literature [16] to refer to this class of solutions as generic solutions. On the other hand,
these surfaces also contain the trajectories of two-parameter families of solitary waves, which
correspond to asymptotic values of the constants γi . Accordingly, they are called non-generic
solutions.

Finally, we describe the kink manifold in these cases. We can distinguish: (A) non-
generic, two-parametric families and (B) Generic, three-parametric families of solitary waves:

(A) Two-parametric families of solutions:

(A1) Solutions on the ellipsoid E:
The potential term U1 vanishes on this surface. Accordingly, the superpotential
function is

W(β2,β3)(λ2, λ3) =
3∑

i=2

W
βi

i (λi) = 1

15

3∑
i=2

(−1)βi P2(λi)
√

1 − λi βi = 0, 1.

The orbit of these solutions is given by

e2γ2 =
3∏

j=1

∣∣∣∣∣
√

1 − λ2 −√1 − cj√
1 − λ2 +

√
1 − cj

∣∣∣∣∣
(−1)β2 cj

Fj (c) 3∏
j=1

∣∣∣∣∣
√

1 − λ3 −√1 − cj√
1 − λ3 +

√
1 − cj

∣∣∣∣∣
(−1)β3 cj

Fj (c)

γ2 being an arbitrary real constant. We have two kinds of solutions:

(i) T
v1,v3
E : stable topological solutions that connect the minima v1 and v3 after having

crossed the plane φ1 = 0.
(ii) N

v3
E : unstable non-topological solutions that join the minimum v3 with itself. The

trajectory of these solutions starts from v3, reaches the plane φ1 = 0, and—after
crossing the umbilical point A—returns to the same point v3; see figure 4.
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The energy of these solutions can easily be calculated by integrating dW along their
respective orbits:

E
[
T

v1,v3
E

] =
∫

T
v1 ,v3
E

dW =
∫

dW(0,0) +
∫

dW(0,1)

=
∫ ᾱ2

σ̄ 2
3

dW 0
2 + 2

∫ 1

σ̄ 2
2

dW 0
3 = 1

15

(
αP2(ᾱ

2) − σ3P2
(
σ̄ 2

3

)− 2σ2P2
(
σ̄ 2

2

))

= 2

3

[(
α5

5
− α3

)
−
(

σ 5
3

5
− σ 3

3

)
− 2

(
σ 5

2

5
− σ 3

2

)]

E
[
N

v3
E

] =
∫

N
v3
E

dW =
∫

dW(0,0) +
∫

dW(0,1) +
∫

dW(1,0) +
∫

dW(1,1)

= 2
∫ σ̄ 2

2

ᾱ2
dW 0

2 + 4
∫ 1

σ̄ 2
2

dW 0
3 = 1

15

(−2σ2P2
(
σ̄ 2

2

)− 2αP2(ᾱ
2)
)

= 4

3

[(
σ 3

2 − σ 5
2

5

)
+

(
α3 − α5

5

)]
.

(A2) Solutions on the plane φ3 = 0:

In this case, the terms U2 and U1 of the potential vanish, but not simultaneously.
The former vanishes over λ2 = σ̄ 2

3 , and the latter over λ1 = σ̄ 2
3 . Because of this,

two superpotential functions appear, and hence two systems of differential equations
must be involved in order to determine this solution. Nevertheless, we can synthesize
W as follows,

W(βk,β3)(λk, λ3) = 1

15

∑
i=k,3

(−1)βi P2(λi)
√

1 − λi βi = 0, 1

where k = 1 for λ2 = σ̄ 2
3 , and k = 2 for λ1 = σ̄ 2

3 . The equations of the orbit on the
plane λk = σ̄ 2

3 are

e2γ2 =
4∏

j=1
j �=3

∣∣∣∣∣
√

1 − λk −√1 − cj√
1 − λk +

√
1 − cj

∣∣∣∣∣
(−1)βk (cj −c3)

Fj (c) 4∏
j=1
j �=3

∣∣∣∣∣
√

1 − λ3 −√1 − cj√
1 − λ3 +

√
1 − cj

∣∣∣∣∣
(−1)β3 (cj −c3)

Fj (c)

.

Again we have two kinds of solutions:

(i) T v1,v2
σ3

: unstable topological solutions linking the vacua v1 and v2. These solutions
leave v1, intersect the axis φ2 and the segment F1F3 consecutively, and finally
arrive at v2, as depicted in figure 5.

(ii) Nv2
σ3

: unstable non-topological solutions connecting v2. The solutions go from
v2, intersect the axis φ2 = 0, cross the focus F2, and return to the initial point v2.

The computation of the energies is as follows:

E
[
T v1,v2

σ3

] = 2

3

[(
α5

5
− α3

)
−
(

1

5
− α2

)
− 2

(
σ 5

2

5
− σ 3

2

)]

E
[
Nv2

σ3

] = 4

3

[(
α3 − α5

5

)
+

(
σ 3

2 − σ 5
2

5

)]
.
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(A3) Solutions on the plane φ2 = 0, see figure 6:

Now, the terms U3 and U2 of the potential vanish over λ3 = σ̄ 2
2 and λ2 = σ̄ 2

2 ,
respectively. The two superpotential functions that appear can be synthesized in a
similar way,

W(β1,βk)(λ1, λk) = 1

15

∑
i=1,k

(−1)βi P2(λi)
√

1 − λi βi = 0, 1

where k = 2 for λ3 = σ̄ 2
2 and k = 3 for λ2 = σ̄ 2

2 . The equations of the orbit on the
plane λk = σ̄ 2

2 are

e2γ2 =
4∏

j=1
j �=2

∣∣∣∣∣
√

1 − λ1 −√1 − cj√
1 − λ1 +

√
1 − cj

∣∣∣∣∣
(−1)β1 (cj −c2)

Fj (c) 4∏
j=1
j �=2

∣∣∣∣∣
√

1 − λk −√1 − cj√
1 − λk +

√
1 − cj

∣∣∣∣∣
(−1)βk (cj −c2)

Fj (c)

.

We now have three classes of solutions:

(i) T v1,v2
σ2

: stable topological solutions that join the minima v1 and v2, as can be
observed in figure 6.

(ii) T v3
σ2

: unstable topological solutions that connect the point v3 with the minimum,
which is its reflection by the transformation φ3 → −φ3, previously crossing the
focus F3.

(iii) T v2,v3
σ2

: unstable topological solutions that link the points v2 and v3. In this case,
the solutions depart from v2, and finally arrive at v3 after intersecting the axis φ3.

The energies for these solutions are

E
[
T v1,v2

σ2

] = 2

3

[(
1

5
− α2

)
−
(

α5

5
− α3

)]

E
[
T v3

σ2

] = 4

3

[(
1

5
− α2

)
−
(

α5

5
− α3

)]
providing a simple kink energy sum rule: 2E

[
T v1,v2

σ2

] = E
[
T v3

σ2

]
. The remaining

energy is

E
[
T v2,v3

σ2

] = 2

3

[(
σ 5

3

5
− σ 3

3

)
− 2

(
α5

5
− α3

)
−
(

1

5
− α2

)]
.

In figure 6 (right), we have depicted the energy density ε(x) of a member of the
family T v3

σ2
. We note that the kinks of this family consist of three basic lumps.

(A4) Solutions on the hyperboloid:

The term U2 vanishes over λ2 = ᾱ2 and hence the superpotential function is

W(β1,β3)(λ1, λ3) = 1

15

∑
i=1,3

(−1)βi P2(λi)
√

1 − λi βi = 0, 1.

The equation of the orbit is

e2γ2 =
4∏

j=2

∣∣∣∣∣
√

1 − λ1 −√1 − cj√
1 − λ1 +

√
1 − cj

∣∣∣∣∣
(−1)β1 (cj −c1)

Fj (c) 4∏
j=2

∣∣∣∣∣
√

1 − λ3 −√1 − cj√
1 − λ3 +

√
1 − cj

∣∣∣∣∣
(−1)β3 (cj −c1)

Fj (c)

.
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Figure 7. Solitary waves on H in the Cartesian (left) and elliptic (middle) spaces. Energy density
of a kink of this family (right).
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Figure 8. Generic solitary waves in the Cartesian (left) and elliptic (middle) spaces. Energy
density of a kink of the family T v3 (right).

In this case, only one family is found:

T
v2,v3
H : the trajectories of these stable solutions connect the points v2 and v3,

previously intersecting the plane φ1 = 0, as is shown in figure 7. Note that the
energy density in this case comprises two basic lumps.

The energy is

E
[
T

v2,v3
H

] = 2

3

[(
σ 5

3

5
− σ 3

3

)
−
(

1

5
− α2

)
− 2

(
σ 5

2

5
− σ 3

2

)]
.

(B) Three-parametric families of solutions. We find three kinds of solutions:
(B1) Solutions located inside the ellipsoid and outside the hyperboloid, see figure 8:

(i) T v1,v2 : stable topological solutions that join v1 and v2. The solutions emerge
from v1, later cross the plane φ1 = 0, and finally arrive at v2.

(ii) T v3 : unstable topological solutions, which start from a minimum v3,
consecutively cross the planes φ1 = 0 and φ3 = 0, intersecting the F1F3 edge,
and finally arrive at v3. Note that the energy density in this case comprises four
basic lumps.

Their energies are

E[T v1,v2 ] = 2

3

[(
α5

5
− α3

)
−
(

1

5
− α2

)
− 2

(
σ 5

2

5
− σ 3

2

)]

E[T v3 ] = 4

3

[(
α5

5
− α3

)
−
(

1

5
− α2

)
−
(

σ 5
2

5
− σ 3

2

)]
.
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Figure 9. Generic solitary waves in the Cartesian (left) and elliptic (right) spaces.

(B2) Solutions located inside the hyperboloid:

(i) T v2,v3 : these are unstable solutions. They leave v2, cross the plane φ1 = 0, later
intersect the hyperbola AF2, cross the plane φ1 = 0 again, and finally arrive at
the point v3; see figure 9.

The energy in this case is

E[T v2,v3 ] = 2

3

[(
σ 5

3

5
− σ 3

3

)
−
(

1

5
− α2

)
− 2

(
σ 5

2

5
− σ 3

2

)
− 2

(
α5

5
− α3

)]
.

To complete the previous energy calculations, the kink energy sum rules satisfied by
the generic solutions are offered:

E[T v1,v2 ] = E
[
T v1,v2

σ3

]
2E[T v2,v3 ] = E

[
N

v3
E

]
+ E
[
T

v2,v3
H

]
+ E
[
T v2,v3

σ2

]
2E[T v3 ] = E

[
T

v1,v3
E

]
+ E
[
T

v2,v3
H

]− 3E
[
T v1,v2

σ2

]
.

See section 3.1 of [16] for an explanation of the origin of these rules in a simpler
setting. We stress that the decomposition of the kink energy density in several lumps
is due to the kink energy sum rules.

Finally, as an example we depict the kink form factor (figures 10 and 11) for the two unstable
generic solutions.

5. Further comments

It is possible to generalize this kind of model in two senses; we enlarge the internal space with
N scalar fields and we include a greater number of coupling constants ᾱ2

i .
(1) To study the generalization of this kind of system to N dimensions, it is first necessary

to introduce N-dimensional Jacobi elliptic coordinates. An appropriate explanation of these
can be seen in [16]. The potential function we propose for the system is as follows,

U(λ; ᾱ2) =
N∑

i=1

Ui(λ; ᾱ2) = 1

2

N∑
i=1

λ2
i (λi − ᾱ2)2∏N

j=2

(
λi − σ̄ 2

j

)
fi(λ)

where the coupling constants together with the coordinates satisfy the chain

−∞ < λ1 < σ̄ 2
N < λ2 < · · · < λN−1 < σ̄ 2

2 < λN < 1 = σ̄ 2
1 .
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Figure 10. Factor form for the T v2,v3 and T v3 solutions. For the T v3 solution, we have taken
γ1 = 0, γ2 = 5 and γ3 = −5, whereas for the T v2,v3 solution the constants are γ1 = γ2 = γ3 = 0.
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Figure 11. Form factors in the Cartesian space for the T v3 and T v2,v3 solutions.

The denominator is fi(λ) = ∏N
j �=i (λi − λj ), and ᾱ2 is a real positive constant. The

function U(λ; ᾱ2) is positive semi-definite and presents a number of zeros, depending on
ᾱ2. The most interesting kink manifold appears when ᾱ2 ∈ Li, i = 1, . . . , N , and becomes
richer as i increases, the Li intervals being the trivial generalization of those appearing in the
three-dimensional potential.

We shall now briefly study the vacuum manifold in all the N different cases at once. Let us
set ᾱ2 such that ᾱ2 ∈ Lj for some j between 1 and N. To find a zero of the function U(λ; ᾱ2),
we must make every term Ui(λ; ᾱ2) vanish. To visualize the process, we shall seek help from
the following graphic:

λ1 λ2
λj+1λj

... ...

λN

j + 1 N − j

λN −1

0 12σ2
2σN σN −1

2 σN − j+1
2α2

Each circle in the λk block represents a value that λk can take to make the term Uk(λ; ᾱ2) null.
Each value appearing in the vacuum coordinates will be represented by a full circle, and hence
each vacuum in the elliptic space is represented by N full circles. To fill the N −j circles to the
right of ᾱ2, there is only one possibility, as seen in the figure, but to fill the remaining j circles
we have a number of different ways equal to the number of permutations of j + 1 elements,
j of them being repeated. Therefore, we have P

(j+1)

j,1 = j + 1 zeros of the U(λ; ᾱ2) function,
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j of them being on the plane λj = ᾱ2. To figure out the number of corresponding Cartesian
vacua, we only need to take into account the multiplicity of each elliptic vacuum. By doing
this, we conclude that by introducing a regular plane λj = ᾱ2 there are V = 4 + (j − 1)2N−1

Cartesian vacua. The kink manifold thus decomposes into V2 disconnected sectors [7].
(2) The second generalization considers not only one parameter, ᾱ2, but several of them.

The generalized potential is constructed as follows.
Let us consider numbers ni = 0, 1, 2, . . . with i = 1, . . . , N , and let us define

(n1 + · · ·+nN) different parameters ᾱ2
ij , such that for each ni �= 0, ᾱ2

ij ∈ Li and j = 1, . . . , ni .
We can therefore construct the N-dimensional potential:

U =
N∑

i=1

Ui

(
λ, ᾱ2

ij

) = 1

2

N∑
i=1

λ2
i

(
λi − σ̄ 2

2

)(
λi − σ̄ 2

3

)
fi(λ)

ni∏
j=1
ni �=0

(
λi − ᾱ2

ij

)2
. (23)

The case in which
∑N

i=1 ni = 0 corresponds to the deformed O(N) linear sigma model
[16] and the case

∑N
i=1 ni = 1, with N = 3, is precisely the model studied in the previous

sections.
As
∑N

i=1 ni increases, the vacuum manifold becomes more and more abundant owing to
the appearance of an increasing number of roots in the potential. An easy way to account for
the vacuum manifold V is through the corresponding generalization of the previous graphic,

λ1 λi
λj

...

λNλN −1

njni

λi+1 λj+1

......

In this picture (n1 + · · · + nN) additional circles appear, α-holes for short, since every
ᾱ2

ij is easily seen to be a root of the Ui term in (23). Computation of the number of vacua
now proves to be an easy task given that, as before, each vacuum point is represented by N
filled circles. It happens that the number of vacua—including v1, which corresponds to all the
α-holes emptied—is given by

Card(V) = 1 +
N∑

q=1

Nq

where Nq is the number of vacuum points with q filled α-holes, which can be calculated
readily using combinatorial techniques.

Regarding the kink manifold, and looking at the corresponding first-order equations, for
each ᾱ2

ij we can deduce a confinement of the solutions in P̄ 3(0) similar to that obtained in
section 3. Therefore, a number of 2(n1+···+nN ) subsets of P̄ 3(0) that host general kink solutions
appear.

The purpose of this construction is now clear. Recalling the stability criterion and
the confinement of the solutions due to the factors

(
λi − ᾱ2

ij

)2
, we can isolate the edges

F1F3 = {
σ̄ 2

3 , σ̄ 2
3 , λ3

}
and AF2 = {

λ1, σ̄
2
2 , σ̄ 2

2

}
. Proceeding in this way, we can find subsets

of the configuration space in which only stable solutions emerge.
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